Radiology - Technology Information Portal
Monday, 29 April 2024
• Welcome to Radiology-TIP.com!
     • Sign in / Create account
 
 'Magnetic Forces' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Searchterm 'Magnetic Forces' found in 0 term [
] and 1 definition [
], (+ 2 Boolean[
] results
Result Pages :
Rutherford-Bohr Atom Model
Ernest Rutherford and Niels Bohr developed in the early 20th century a solar system like model of the atoms, in which electrons orbit around the nucleus (protons and neutrons) held by electromagnetic forces (protons - electrons).
The nucleus is held together by a very strong but short distance nuclear force, attracting all nucleons. While the protons positive charges try pushing it apart, is it the balance between protons and neutrons which decide over an elements stability.
In their model the energy of orbiting electrons is quantized into fixed values. Electrons in outer orbits are more loosely bound than the ones at inner orbits and affect an atom's chemical properties.
Erwin Schrodinger and Werner Heisenberg developed probability functions which assigns the electrons to cloud like spaces instead of fixed orbits.
Vector
A vector is a quantity characterized by a magnitude (in mathematics a number, in physics a number times a unit) and a direction (and a point of application), often represented graphically by an arrow. The length of the line segment represents the magnitude, and its orientation in space represents its direction. Vector quantities can be added to or subtracted from one another. Used in diagnostic imaging to describe forces, e.g. magnetic moment, spin, magnetization etc.
Photoelectric Effect
The photoelectric effect describes the following interaction of electromagnetic radiation with a metallic surface: a photon with an energy (frequency) above the binding energy of an electron gets absorbed and the electron is emitted. The positive energy difference is transferred to the electrons kinetic energy. If the photons energy is not high enough for the electron to overcome its binding forces, the photon will be re-emitted. It is not the intensity of a photon beam (amount of photons) which allows the photoelectric effect; it is the energy (frequency) of a single photon which will allow the emission of a single photoelectron.
The discovery and study of the photoelectric effect leads to a new quantized understanding in physics. Albert Einstein was awarded the Noble prize for physics in 1921 'for his services to theoretical physics and especially for his discovery of the law of the photoelectric effect'.
The photoelectric effect is the most important effect in medical radiography. E.g. it is photoelectric absorption that is responsible for most of the absorption in a mammogram which creates the contrast in the image.

See also Photon, Electron.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Radiology - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertising
 [last update: 2023-11-06 02:01:00]